Bio-Mikrosensor für Lebensmittel

Eine neue Generation von Mikrosensoren soll das Internet der Dinge in den Bereich von Lebensmitteln und Medizin erweitern. Forscher der ETH Zürich haben jetzt einen Mikrosensor entwickelt, der dünner als menschliches Haar und biologisch abbaubar ist. Er ist damit für die Gesundheit unbedenklich.

Mikrosensoren werden heute schon breit eingesetzt, zum Beispiel um giftige Gase zu erkennen. Auch in kleine Sender-Empfänger-Systeme, wie den weitverbreiteten RFID-Chips, werden sie eingebaut. Da solche Sensoren jedoch oft umwelt- und gesundheitsschädliche Edelmetalle enthalten, kommen sie für medizinische Anwendungen mit direktem Körperkontakt oder zum Anbringen an Lebensmitteln nicht infrage. Entsprechend groß ist das Interesse von Forschung und Industrie an Mikrosensoren aus nichttoxischen Materialien, die biologisch abbaubar sind.

Magnesiumdraht in Polymer

Ein Forscherteam um Giovanni Salvatore, Postdoktorand an der Professur für Elektronik an der ETH Zürich, entwickelte nun gemeinsam mit Wissenschaftlern weiterer ETH-Institute einen solchen Bio-Mikrosensor für die Temperaturmessung. Sie berichten davon im Fachmagazin „Advanced Functional Materials“. Für den Bio-Mikrosensor schweißten sie einen superfeinen, eng gewundenen Elektrodraht aus Magnesium, Silikondioxid und -nitrit in ein kompostierbares Polymer ein. Magnesium ist ein wichtiger Bestandteil unserer Ernährung; Silikondioxid und -nitrit sind biokompatibel und wasserlöslich. Das verwendete Polymer wird aus Mais- und Kartoffelstärke produziert und entspricht den EU- und US-Richtlinien für den Einsatz im Lebensmittelbereich.

Giovanni Salvatore ist überzeugt, dass solchen Bio-Mikrosensoren eine grosse Zukunft bevorsteht. Er macht ein Anwendungsbeispiel: „Fische aus Japan könnten für den Transport nach Europa mit winzigen Temperatursensoren versehen werden. Dadurch könnte kontinuierlich überwacht werden, ob sie ausreichend gekühlt sind“. Dafür sind Sensoren nötig, die an Lebensmitteln angebracht sind und die Gesundheit der Konsumenten nicht gefährden. Damit die Sensoren in Containern voller Fisch oder anderer Lebensmittel eingesetzt werden können, müssen sie außerdem genügend klein, robust und flexibel sein.

Dünner als ein Haar

Der von den Forschern entwickelte Sensor ist lediglich 16 Mikrometer dick, also wesentlich dünner als ein Haar (100 Mikrometer), und er wiegt in einer wenige Millimeter großen Ausführung nur Bruchteile von einem Milligramm. In seiner jetzigen Form ist der Sensor in einer einprozentigen Salzlösung in 67 Tagen komplett aufgelöst. Funktionstüchtig bleibt er derzeit einen Tag lang, denn solange dauert es, bis das Wasser durchs Polymer diffundiert ist und es den Draht des Sensors aufgelöst hat. Das würde reichen, um beispielsweise eine Fischlieferung von Japan nach Europa zu überwachen.

Zur Energieversorgung haben die Forscher den Sensor mit ultradünnen, biologisch abbaubaren Zinkkabeln an eine externe Mikrobatterie gekoppelt. Auf demselben (nicht biologisch abbaubaren) Chip befinden sich ein Mikroprozessor sowie ein Sender, über den die Temperaturdaten mit Bluetooth an einen externen Computer gesendet werden. Dadurch kann die Temperatur eines Produkts über eine Reichweite von zehn bis zwanzig Metern kontinuierlich überprüft werden.

Biosensoren aus dem Drucker

Derzeit ist die Herstellung des Bio-Mikrosensors noch sehr aufwendig und kostspielig. Salvatore ist jedoch überzeugt, dass die Sensoren künftig für den Massenmarkt produziert werden könnten. Insbesondere, weil die Druckverfahren für Elektronik immer besser werden. Salvatore prognostiziert, dass wir in fünf bis zehn Jahren erste solche biologisch abbaubaren Sensoren im Alltag antreffen werden, je nach Interesse der Industrie. Bis dann würden Batterie, Prozessor und Sender wahrscheinlich gleich im Mikrosensor integriert sein. Damit auch diese Komponenten für Umwelt und Gesundheit unbedenklich sind, ist noch viel Forschung nötig. Das Team forscht deshalb aktuell an einem biokompatiblen Energieträger für seinen Sensor.

Literaturhinweis:
Salvatore GA et al.: Biodegradable and Highly Deformable Temperature Sensors for the Internet of Things. Advanced Functional Materials 2017. 1702390. doi: 10.1002/adfm.201702390