3D-Bioprinting kommt voran

menschliches Gehirn
Kondensiertes Licht wandert durch ein menschliches Gehirn, das mit „SHANEL“ durchsichtig gemacht wurde. (Foto: © Helmholtz Zentrum München / Ertürk Lab)

Künftig könnten dringend benötigte menschliche Spenderorgane on demand künstlich erzeugt werden. Auf dem Weg hin zum Druck vollständiger Organe haben Münchner Forscher jetzt wichtige Fortschritte erzielt.

Erstmals gelang es jetzt Wissenschaftlern des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM), intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen könnten künftig als Vorlage für 3D-Bioprinting-Technologien dienen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. 

Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große Herausforderung. Denn Technologien, die Organstrukturen auf zellulärer Ebene abbilden können, fehlten. Fortschritte im Bereich des sogenannten Tissue Clearing ermöglichten es, erste 3D-Bilder transparenter Organe von Mäusen auf Zellebene zu erzeugen. Diese Methode konnte jedoch nicht auf den Menschen übertragen werden.

„Wir mussten einen neuen Weg einschlagen“

Menschliche Organe haben eine besonders steife Struktur. Dies liegt daran, dass menschliches Organgewebe in den Jahren und Jahrzehnten des Wachstums unlösliche Moleküle wie Collagen anhäuft. Herkömmliche Reinigungsmittel (Detergentien) können daher zwar Organe von Mäusen durchsichtig machen, von Menschen, insbesondere Erwachsenen, jedoch nicht. „Wir mussten einen völlig neuen Weg einschlagen und ganz von vorne anfangen, um eine neue Chemikalie zu finden, die auch menschliche Organe transparent machen kann“, sagt Shan Zhao, Doktorandin am Helmholtz Zentrum München und Erstautorin der aktuellen Studie. Nach aufwendigen Versuchen fand das Team dann heraus, dass das Detergens CHAPS in den steifen menschlichen Organen kleine Löcher erzeugen konnte. Dadurch konnten zusätzliche Lösungen tief in die zentimeterdicken Organe eindringen und diese in transparente Strukturen umwandeln.

Deep-Learning-Algorithmen analysieren Zellen in 3D

Nachdem die menschlichen Organe, die post mortem vom Labor von Prof. Ingo Bechmann der Universität Leipzig bereitgestellt wurden, transparent gemacht worden waren, mussten die Wissenschaftler zusätzliche Herausforderungen bewältigen: Die Bildgebung der Organe und die Auswertung der dabei entstehenden Datenmassen. Zunächst entwickelten sie daher gemeinsam mit Miltenyi Biotec ein neues Laser-Scanning-Mikroskop mit einer besonders großen Aufnahmekapazität. Mit diesem Mikroskop sind Aufnahmen von gesamten menschlichen Organen bis hin zur Größe einer Niere möglich. Anschließend entwickelte das Team zusammen mit Professor Bjoern Menze von der TUM Deep-Learning-Algorithmen, um Abermillionen von Zellen in 3D analysieren zu können.

Diese Technologie fassten die Forschenden unter dem Namen SHANEL (Small-micelle-mediated Human orgAN Efficient clearing and Labeling) zusammen. „SHANEL könnte sich in naher Zukunft zu einer Schlüsseltechnologie für die Kartierung intakter menschlicher Organe entwickeln. Damit könnten wir sehr schnell viel besser verstehen, wie sich Organe wie unser Gehirn entwickeln und wie sie im gesunden und erkrankten Zustand funktionieren“, erklärt Dr. Ali Ertürk, Direktor des Instituts für Tissue Engineering und Regenerative Medizin am Helmholtz Zentrum München.

Finales Ziel: 3D-Bioprinting

Wissenschaftlerinnen und Wissenschaftler arbeiten bereits dran, Technologien für den Druck von Organen – 3D-Bioprinting – zu entwickeln. Zelluläre dreidimensionale Karten von menschlichen Organen könnten künftig als Vorlage für neue Organe aus solchen 3D-Biodruckern dienen. Um dieses Ziel zu erreichen, arbeiten Ertürk und sein Team derzeit an der Kartierung der wichtigsten menschlichen Organe, beginnend mit der Bauchspeicheldrüse, dem Herzen und der Niere.

„Es gibt einen enormen Mangel an Spenderorganen für Hunderttausende von Menschen“, sagt Ertürk. „Die Wartezeiten für Ersatzorgane sind sehr lang und die Transplantationskosten hoch. Mit dem detaillierten Wissen über die Zellstruktur menschlicher Organe kommen wir der künstlichen Herstellung funktionsfähiger Organe on demand einen wichtigen Schritt näher.“