Schädelknochen als Passwort

Der Zugang zu Notebooks oder Smartphones ist oft durch ein Passwort geschützt. Dieses ist jedoch häufig unsicher – oder wird vom Nutzer vergessen. Ein bisher ungenutztes, biometrisches Merkmal könnte künftig den Zugang vereinfachen.

Mit biometrischen Merkmalen wie Fingerabdruck, Stimme oder Iris kann man sich bereits heute sicherer ausweisen. Informatiker der Universität des Saarlandes und der Universität Stuttgart setzen nun auf ein bisher ungenutztes biometrisches Merkmal, das bei Brillencomputern wie Google Glass oder Epson Moverio angewendet werden kann: Der Schädelknochen des Anwenders liefert den digitalen Zugangscode. Das Verfahren könnte künftig auch Smartphones absichern.

„Brillencomputer wie Google Glass finden insbesondere in Unternehmen und Universitäten ihren Einsatz: Sie helfen bei Physik-Experimenten, in Chemie-Laboren, zeichnen medizinische Untersuchungen auf und unterstützen Kinderärzte während Operationen“, sagt Andreas Bulling vom Exzellenzcluster für „Multimodal Computing and Interaction“ an der Universität des Saarlandes. Dort leitet der 35 Jahre alte Informatiker die Gruppe „Perceptual User Interfaces“ und forscht außerdem am benachbarten Max-Planck-Institut für Informatik.

„Die Nutzer haben bei diesen Anwendungen nicht die Hände frei, um umständlich ein Passwort einzugeben. Außerdem teilen sich oft mehrere Personen ein Gerät und speichern darauf sensible Daten ab“, erklärt Bulling. Nicht nur die Daten, auch die Brillencomputer selbst lassen sich leicht stehlen. Dies bestätigt eine Studie des Branchenverbandes Bitkom aus dem vergangenen Jahr. 28 Prozent der 1074 befragten Sicherheitsexperten aus Unternehmen geben an, dass in den vergangenen zwei Jahren Geräte auf diese Art und Weise samt den darauf gespeicherten Daten verschwunden sind.

Sensoren messen Schallschwingungen

Um im Falle eines Diebstahls den Zugang zu Google Glass zu schützen und den rechtmäßigen Nutzer zu erkennen, haben Andreas Bulling und Youssef Oualil von der Universität des Saarlandes zusammen mit Stefan Schneegass von der Universität Stuttgart eine neue Methode entwickelt. Dabei nutzten die Forscher auf geschickte Art und Weise die Sensoren, über die der Brillencomputer ohnehin verfügt. Neben dem Miniatur-Mikrofon ist dies der sogenannte Bone Conduction Speaker, der unsichtbar in das Gestell in der Nähe des rechten Ohrbügels eingelassen ist. Mit Hilfe der „Knochenleitung“, auch Knochenschall genannt, überträgt er Töne auf die gleiche Art und Weise zum Ohr, wie es spezielle Hörgeräte tun. Dazu leitet er Schallschwingungen über den das Ohr umgebenden Schädelknochen direkt an das Innenohr.

„Da der Schädelknochen individuell unterschiedlich ist, wird dabei das Tonsignal auf eine für jeden Menschen charakteristische Art und Weise verändert. Das aus dem Schädelknochen austretende Tonsignal nutzen wir dann als biometrisches Merkmal“, erläutert Bulling.

Hierfür lassen die Forscher den Knochenschall-Lautsprecher ein Signal abspielen, das ein breites Frequenzspektrum abdeckt. Das durch den Schädelknochen veränderte Audiosignal nehmen sie dann mit dem in der Brille integrierten Mikrofon auf. „Aus dieser Aufnahme extrahieren wir mit zwei speziellen Rechenverfahren die Identifikationsmerkmale und setzen diese zu einer Art digitalem Fingerabdruck zusammen. Dieser ist charakteristisch für jede Person und wird dann abgespeichert“, sagt Bulling. Setzt von nun an jemand den Brillencomputer auf, startet der Vorgang automatisch. Das Signal schallt durch den Schädel, das Mikrofon nimmt es auf. Passt der aktuelle Audio-Fingerabdruck zu dem abgespeicherten, bekommt die Person Zugriff auf die Brille.

Alltags-Test steht noch aus

„Getestet wurde das ‘SkullConduct’ getaufte Verfahren bisher an zehn Personen. Diese wurden dabei mit einer Genauigkeit von 97 Prozent erkannt. Als nächstes will der Saarbrücker Informatiker gemeinsam mit seinen Kollegen untersuchen, ob ihre Methode auch im Alltag funktioniert. Sie wollen auch den Frequenzbereich von Ultraschall untersuchen, der den Vorteil hätte, dass der Anwender das Signal nicht hören würde. Die Forscher können sich ihr Verfahren grundsätzlich auch am Smartphone vorstellen. „Wenn das Smartphone über einen entsprechend platzierten Knochenschalllautsprecher und ein Mikrofon verfügt und der Anwender es mit Knochenkontakt an seinen Schädel drückt, könnte es möglicherweise sogar mit dem normalen Klingelton des Smartphones funktionieren“, sagt Bulling.

Details zum neuen System berichten die Forscher auf der aktuell stattfindenden Konferenz „Human Factors in Computing Systems (CHI)“ im kalifornischen San Jose und beschreiben diese in der dort angenommenen Forschungsarbeit „SkullConduct: Biometric User Identification on Eyewear Computers Using Bone Conduction Through the Skull“.